Analysis of Temporal and Spatial Temperature Gradients for IC Reliability
نویسندگان
چکیده
One of the most common causes of IC failure is interconnect electromigration (EM), which exhibits a rate that is exponentially dependent on temperature. As a result, EM rate is one of the major determinants of the maximum tolerable operating temperature for an IC and of resulting cooling costs. Previous EM models have assumed a uniform, typically worst-case, temperature. This paper presents a model that accounts for temporal and spatial variations in temperature, and shows that accounting for these variations can dramatically improve interconnect lifetime prediction accuracy. We also show that the same modeling approach applies to temperature-related gate-oxide breakdown, another common cause of IC failure. We then propose that by modeling expected lifetime as a resource that is consumed over time at a rate dependent on temperature, substantial design margin can be reclaimed. For example, for a fixed target lifetime, intermittent higher operating temperatures and performance can be tolerated if compensated by lower temperatures at other times during the product’s lifetime. This approach offers higher overall performance and/or lower cooling costs than a standard design methodology that uses a worst-case temperature criterion for reliability analysis. This report supersedes TR CS-2003-21 and TR CS-2004-07. Keywords—reliability, electromigration, gate oxide breakdown, thermal management, gradient
منابع مشابه
The Importance of Temporal and Spatial Temperature Gradients in IC Reliability Analysis
Existing IC reliability models assume a uniform, typically worst-case, operating temperature, but temporal and spatial temperature variations affect expected device lifetime. This paper presents a model that accounts for temperature gradients, dramatically improving interconnect and gate-oxide lifetime prediction accuracy. By modeling expected lifetime as a resource that is consumed over time a...
متن کاملInterconnect Lifetime Prediction with Temporal and Spatial Temperature Gradients for Reliability-Aware Design and Runtime Management: Modeling and Applications
Thermal effects are becoming a limiting factor in high performance circuit design due to the strong temperature dependence of leakage power, circuit performance, IC package cost and reliability. While many interconnect reliability models assume a constant temperature, this paper analyzes the effects of temporal and spatial thermal gradients on interconnect lifetime in terms of electromigration....
متن کاملTemperature-Aware Modeling and Banking of IC Lifetime Reliability
Most existing integrated circuit (IC) reliability models assume a uniform, typically worst-case, operating temperature, but temporal and spatial temperature variations affect expected device lifetime. As a result, design decisions and dynamic thermal management (DTM) techniques using worst-case models are pessimistic and result in excessive design margins and unnecessary runtime engagement of c...
متن کاملAnalysis of temporal and spatial correlation between precipitable water vapor retrievals from AIRS satellite sensor and 29 synoptic station measurements in Iran
Precipitable Water Vapor (PWV) is one of the most important quantities in meteorology and climate studies. PWV in Earth's atmosphere can be measured by Sun-photometer, the Atmospheric Infrared Sounder (AIRS), and radiosonde from surface, atmosphere and space-based systems, respectively. In this paper, we use PWV measured by Sun-photometer located in Institute for Advanced Studies in Basic Scien...
متن کاملSpatial and Temporal Variation of Macroalgae along the Southern Coasts of the Caspian Sea Relating to Environmental Parameters
Macroalgae are considered as primary producers in ecosystem food chain. This study investigated spatial and temporal variation of three species of macroalgae namely, Laurencia caspica (red macroalga) Enteromorpha intestinalis and Cladophora glomerata (green macroalgae) on the hard substrates of the southern Caspian Sea coasts and their relation with environmental factors. Seasonal sampling pref...
متن کامل